Generic Connection Admission Control (GCAC) Algorithm Specification for IP/MPLS Networks
نویسندگان
چکیده
This document presents a generic connection admission control (GCAC) reference model and algorithm for IP-/MPLS-based networks. Service provider (SP) IP/MPLS networks need an MPLS GCAC mechanism, as one motivational example, to reject Voice over IP (VoIP) calls when additional calls would adversely affect calls already in progress. Without MPLS GCAC, connections on congested links will suffer degraded quality. The MPLS GCAC algorithm can be optionally implemented in vendor equipment and deployed by service providers. MPLS GCAC interoperates between vendor equipment and across multiple service provider domains. The MPLS GCAC algorithm uses available standard mechanisms for MPLS-based networks, such as RSVP, Diffservaware MPLS Traffic Engineering (DS-TE), Path Computation Element (PCE), Next Steps in Signaling (NSIS), Diffserv, and OSPF. The MPLS GCAC algorithm does not include aspects of CAC that might be considered vendor proprietary implementations, such as detailed path selection mechanisms. MPLS GCAC functions are implemented in a distributed manner to deliver the objective Quality of Service (QoS) for specified QoS constraints. The objective is that the source is able to compute a source route with high likelihood that via-elements along the selected path will in fact admit the request. In some cases (e.g., multiple Autonomous Systems (ASes)), this objective cannot always be met, but this document summarizes methods that partially meet this objective. MPLS GCAC is applicable to any service or flow that must meet an objective QoS (delay, jitter, packet loss rate) for a specified quantity of traffic. Ash & McDysan Experimental [Page 1] RFC 6601 GCAC Algorithm for IP/MPLS Networks April 2012 Status of This Memo This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6601.
منابع مشابه
A New Connection Admission Control for Spotbeam Handover in LEO Satellite Networks
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of...
متن کاملA new spotbeam handover management technique for LEO satellite networks
AbstmctThe geographical connection admission control (GCAC) algorithm is introduced for low earth orbit LEO) satellite networks. The GCAC scheme estimates the L u r e handover blocking probability of a new call attempt based on the user location database, in order to decrease the handover blocking. By simulation, it is shown that the proposed GCAC scheme guarantees the handover blocking probabi...
متن کاملTraffic Engineering Using MPLS for Best Effort Traffic
The advent of Multi-protocol Label Switching (MPLS) enables traffic engineering by introducing connection-oriented features of forwarding packets over arbitrary non-shortest paths. Our goal in this research is to improve the network utilization for best effort traffic in IP networks. By examining the best effort traffic class, we assume the large volume of research that has been conducted on tr...
متن کاملUsing a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks
Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...
متن کاملOPNET Simulation of SIP Based IP Telephony over MPLS Network
The next generation communication system will provide high quality multimedia service in a more flexible and intelligent manner. In this paper, we propose a new SIP over MPLS network architecture to achieve this goal. To integrate SIP protocol with the traffic engineering function of MPLS network seamlessly and facilitate SIP call setup, the SIP-MPLS traffic aggregation server (TA server) is hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RFC
دوره 6601 شماره
صفحات -
تاریخ انتشار 2012